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Abstract

An efficient, local, explicit, second-order, conservative interpolation algorithm between
spherical meshes is presented. The cells composing the source and target meshes
may be either spherical polygons or longitude–latitude quadrilaterals. Second-order
accuracy is obtained by piecewise-linear finite volume reconstruction over the source5

mesh. Global conservation is achieved through the introduction of a supermesh, whose
cells are all possible intersections of source and target cells. Areas and intersections
are computed exactly to yield a geometrically exact method. The main efficiency bottle-
neck caused by the construction of the supermesh is overcome by adopting tree-based
data structures and algorithms, from which the mesh connectivity can also be deduced10

efficiently.
The theoretical second-order accuracy is verified using a smooth test function

and pairs of meshes commonly used for atmospheric modelling. Experiments con-
firm that the most expensive operations, especially the supermesh construction, have
O(N logN) computational cost. The method presented is meant to be incorporated in15

pre- or post-processing atmospheric modelling pipelines, or directly into models for
flexible input/output. It could also serve as a basis for conservative coupling between
model components, e.g. atmosphere and ocean.

1 Introduction

Despite the simplicity and regularity of a spherical surface, there is no single ideal20

way to mesh it. Consequently, numerical methods formulated on the sphere, used for
instance in weather forecasting and climate modelling, use a variety of meshes. For
a long time spectral and finite-difference schemes have been using longitude–latitude
meshes. However most recently developed methods use more flexible meshes like
triangulations of the sphere and their Voronoi dual, or quadrangular meshes like the25
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“cubed-sphere”. Such meshes avoid the polar singularity inherent to the longitude–
latitude system (Williamson, 2007).

Different physical components like atmosphere, land, ice, ocean typically use distinct
meshes. As they are coupled together interpolation between the various meshes is re-
quired. Furthermore the native model mesh may not be the most practical to perform5

post-processing and analysis of the simulations, and interpolating to a more conve-
nient mesh can be desirable. Finally interpolation is a crucial building block of dynamic
mesh adaptation, which enables a simulation to dynamically focus resolution where it
is important, potentially saving orders of magnitude in computational costs. Although
dynamic adaptivity is not a current practice in ocean/atmosphere modelling, there is10

a growing body of research to this end, and dynamic adaptivity may mature in the fu-
ture. Meanwhile statically refined meshes are increasingly used, and there is a need to
interpolate from/to such meshes.

In applications like climate modelling, it is often vital that some physical quantities
be conserved, such as density, volume fractions or tracer concentrations. When in-15

terpolating fluxes between physical component coupled together, similar convervation
constraints should be enforced. Failing to enforce these conservation properties may
create spurious sources and sinks which, however small, may accumulate over time
and overwhelm the physical trends. Therefore even if one uses a conservative discreti-
sation method for the relevant PDEs, there is a need to ensure conservation in the20

interpolation step.
This paper describes a second-order conservative interpolation algorithm on the

sphere. Our method improves over previously published work as follows:

– it is geometrically exact as defined and discussed in Ullrich et al. (2009), and
unlike Jones (1999)25

– it is not tied to a narrow class of meshes (e.g. Ullrich et al., 2009 which handles
only cubed-sphere and lon-lat meshes): our method handles lon-lat meshes and
arbitrary polygonal meshes, including the cubed-sphere, general triangulations
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and their Voronoi duals, which encompasses the vast majority of currently-used
meshes

– it is local and explicit, unlike optimisation-based approaches (Farrell et al., 2009)
which require an iterative solver. Therefore a small number of interpolation
weights can be pre-computed and parallelism is facilitated.5

Our method relies on the availability of a supermesh, i.e. a mesh which refines both
the source and target meshes. Assuming that the supermesh is known, formulae for
second-order conservative interpolation are derived in Sect. 2. Algorithms used to con-
struct the supermesh are described in Sect. 3. Numerical experiments are conducted
in Sect. 4 to verify the accuracy of the method when used with various pairs of spher-10

ical meshes, as well as the theoretical algorithmic complexity. A summary is given in
Sect. 5.

2 Second-order conservative interpolation

The source and target meshes are sets of spherical cells Si and Tj , each cell being
either a spherical polygon or a lon-lat quadrilateral. The intersection Si ∩Sj (resp. Ti ∩15

Tj ) for i 6= j is either void, a shared vertex or a shared edge. The latter case defines
neighboring cells. Both meshes are assumed to cover the whole sphere i.e.

⋃
Si =

⋃
Tj .

Scalar functions are assumed to be described via their integrals over mesh cells.
Indeed in most GCMs many if not all fields are treated in a finite-volume manner. The
problem we wish to solve is, given the integrals fi of a smooth function f on the source20

mesh, to obtain accurate estimates f ′j of the integrals on the target mesh, so that the
total integral is preserved:∑
i

fi =
∑
j

f ′j . (1)
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Second-order accuracy will result from linear reconstructions on each Si , assuming f
has a bounded second derivative. To achieve conservation (Eq. 1), one introduces the
supermesh Uk = (Si ∩ Tj )i ,j . The supermesh is such that any cell of both source and
destination meshes is the union of cells of the supermesh. The problem comes down
to finding approximations5

f ′′k ≈
∫
Uk

f s. t.
∑
Uk⊂Si

f ′′k = fi . (2)

We want the approximation to be exact for a constant function. This property implies
for the cell areas Ai , Ak :

Ai =
∑
Uk⊂Si

Ak . (3)

To satisfy Eq. (3), all spherical areas are computed exactly (see Sect. 3.4). In the10

general case a piecewise linear reconstruction f̃ ∈ P C1(S) of f over the source mesh
is built and integrated by approximate quadrature over Uk , yielding f ′′k . We define the
reconstruction as

f̃i (x) = f i +gi · (x−Ci ) for any x ∈
◦
Si , (4)

where f i = fi/Ai is the mean value of f over Si , gi is an approximation of the gradient15

of f on Si and Ci is the centroid of Si . The quadrature is defined as f ′′k = Ak f̃ (Ck). It
follows that

∀i ,
∑
Uk⊂Si

f ′′k =
∑
Uk⊂Si

Akf i +
∑
Uk⊂Si

Akgi · (Ck −Ci ) (5)

= fi + gi ·
∑
Uk⊂Si

AkCk − Aigi ·Ci , (6)

in view of Eq. (3), which gives two necessary orthogonality conditions for Eq. (2) to20

hold:
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– ∀i ,gi ·Ci = 0,

– ∀i ,gi ·
∑
Uk⊂SiAkCk = 0

By computing first the barycenters Ck of the supermesh cells Uk , then obtaining
from them the barycenters of the source cells as Ci = N(

∑
Uk⊂SiAkCk), where N(C) =

C/
√
C ·C, the two above conditions become equivalent. To satisfy them, a first-order5

estimate g̃i of the gradient is orthogonalized with respect to Ci , yielding gi . Since the
orthogonality condition is satisfied by the exact gradient, this orthogonalization entails
no loss of accuracy. The g̃i are computed by the Gauss formula on a neighborhood of
Si , that is the polygon Σi joining the centroids of neighbouring elements (Tomita et al.,
2001). Indeed as10 ∫
Vi

∇f =
∫
∂Σi

(f − f i )nds, (7)

with ∂Σi the boundary of Σi and n the outward normal to Σi , we set

g̃i =
1

A(Σk)

∑
Si ∩Sj ∩Sk 6= ∅
i , j ,k distinct

 f j + f k
2
− f i

Cj ×Ck (8)

where each pair j ,k of neighbours appears only once, so that the triangle CiCjCk
is counter-clockwise. In Eq. (8), substracting f i guarantees that a constant field has15

a zero gradient.
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3 Spherical supermesh

3.1 Intersection between a pair of cells

We describe here how, given two cells C and C′, their intersection U is obtained. The
unit sphere is represented as the surface x2 +y2 +z2 = 1 in Cartesian coordinates. In-
tersection points between all pairs of edges of C and C′ are computed by representing5

small and great circles as the intersection of the unit sphere with a plane. For great
circles, this plane contains the origin, while it does not for small circles. Among the
resulting segments, those which are inside either C or C′ are collected and ordered
counter-clockwise to form the boundary of U . Notice that U is allowed to have several
connected components, in which case as many supermesh cells are created.10

3.2 Fast search of potential intersectors

Constructing the supermesh requires in principle to compute the intersection between
all Si and Tj . Assuming both meshes have O(N) cells, this brute-force approach has

a quadratic algorithmic complexity O(N2). However in fact most intersections are empty.
Moreover cells of the source and destination meshes can be grouped hierarchically in15

sets with mostly empty mutual intersections. Exploiting this fact, as described below,
yields fast search algorithms and is crucial to attain O(N logN) algorithmic complexity.

The fast search algorithm takes as input a mesh and a spherical circle. It yields a list
of cells in the mesh that potentially lie partly or totally inside the circle. The algorithm
guarantees that all cells of the mesh that actually lie partly or totally in the circle are in20

the list. Some of those cells may in fact lie outside the circle, although the algorithm is
designed to keep their number to a minimum.

In order to yield O(N logN) complexity, a bounding circle is computed for each
cell and these circles are inserted sequentially into a similarity-search tree, or SS-
tree (White and Jain, 1996), which grows progressively starting from an empty tree with25

a single root node. During this process, each node of the tree has its own bounding
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circle which encloses the bounding circles of all of its children, and the mesh cells are
at the leaves of the tree. To insert one circle, one traverses the tree top-down, choos-
ing at each level the closest child node, based on the distance between the centers of
the bounding circles. The circle is then inserted at the lowermost level. Before the next
circle is inserted, a tree balancing step is performed. If the parent node of the newly5

inserted cell has more children than a predefined threshold (set here to Nmax = 10), it
is split in two, hence increasing the child count of its own parent. If the threshold Nmax
is exceeded again, this node is split, and so on until the root node is reached. If the
root node needs to be split, a parent node with two children is created and becomes
the new root node, increasing the depth of the tree.10

Every insertion is followed by a re-balancing step in order to avoid a large overlap
between bounding circles, which would diminish the efficiency of the search algorithm
(reference). To this end, after a node (leaf or not) has been inserted, those of its siblings
whose distance from the parent exceeds 80 % of its radius are removed from the tree
and put into the list of nodes to be inserted later. Such nodes are marked so that they15

are not removed again from the tree.
To completely specify the tree construction algorithm, we now describe the method

used to split a set of Nmax+1 children into two sets. First the child farthest from the cen-
ter of the parent bounding circle is found. Then the Nmax/2 nodes closest to that node
are grouped together, while the remaining nodes form another group. Other splitting20

methods have been proposed and would be easy to implement (refs).
Once all mesh cells have been inserted and the SS-tree is ready, the list of potential

intersectors is obtained by traversing the tree top-down, following the branches whose
enclosing circle intersects the target circle. The detailed calculation of intersections is
performed only with cells in this list.25

3.3 Connectivity reconstruction

Although the SS-tree is primarily built in order to speed up the construction of the super-
mesh, it also provides an essentially cost-free means of reconstructing the connectivity
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of the meshes. Indeed to reconstruct the connectivity of, say, the source mesh, it is suf-
ficient to apply the previous algorithm to the source mesh and a source cell. This con-
nectivity is required when computing the gradient g̃i . Therefore our method works in cir-
cumstances where mesh connectivity is not readily available, for instance when reading
data from NetCDF files following the NetCDF-CF convention (http://cfconventions.org/).5

3.4 Supermesh cell area and barycenter

Supermesh cell edges are an arbitrary mix of small and great circle segments. To
compute their area, we represent them as a combination of spherical triangles and
surfaces enclosed by a small circle segment and a great circle segment with the same
endpoints, possibly counted negatively. A similar approach is used for barycenters.10

An accurate treatment of small circle segments is crucial for accuracy on reduced
latitude–longitude grids (Purser, 1998). Indeed for such grids the cells close to the
poles have strongly curved boundaries and approximations that conflate a small arc
and the great arc with the same endpoints fail to deliver second-order accuracy (not
shown).15

4 Results

In this section we verify the accuracy and efficiency of the method, encompassing sev-
eral types of meshes: latitude–longitude, triangular, polygonal dual and cubed-sphere
(see Fig. 2). Computations were done on an Intel P8700 processor @2.53 GHz with
4 GB RAM.20

4.1 Meshes

All meshes whose cell edges are an arbitrary mix of great and small spherical arcs
are supported. This includes standard and skipped latitude–longitude meshes, cubed-
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sphere meshes, triangulations and general polygonal meshes. Figure 2 shows meshes
that we specifically use for the tests presented below:

– standard longitude–latitude meshes where the zonal and meridional resolution
are equal at the Equator and the pole is a vertex,

– their skipped variant, where the number of cells along a parallel varies, starting5

at 4 around the pole and doubling to keep the zonal cell size less than twice the
meridional cell size (Purser, 1998),

– cubed-sphere meshes (Sadourny, 1972),

– triangular-icosahedral meshes and their hexagonal-pentagonal Voronoi duals
(Sadourny et al., 1968),10

– variable-resolution variants of the latter obtained by applying a Schmidt transform
to each vertex (Guo and Drake, 2005).

4.2 Accuracy

Interpolation between various pairs of meshes is applied to the smooth field 2+xy .
The input data is obtained by evaluating this function at source cell barycenters Gj . The15

global conservation property (Eq. 1) is satisfied within round-of error (not shown). Inter-
polation error is evaluated by evaluating the test function at destination cell barycenters
and comparing to the interpolated value f j = fj/Aj :

εp =
(

1
4π

∑
Aj
∥∥∥f j − f (Gj)∥∥∥p)1/p

ε∞ = maxj
∥∥∥f j − f (Gj)∥∥∥20

When using a piecewise-constant reconstruction on the source mesh, interpolation
error is expected to be proportional to the local gradient of the test function and to
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the cell size (largest of source and target mesh sizes). When using a piecewise-linear
reconstruction, interpolation error is expected to be proportional to the local second
derivatives of the test function and to the squared cell size.

We first consider remapping between pairs of uniform-resolution meshes of com-
parable resolution h ranging from 0.01 (a few hundred thousand cells) to 0.1 (a few5

thousand cells). Figure 3 shows the maximum (L∞) and root-mean-square (L2) inter-
polation error, as a function of a global characteristic cell size h defined as the average
of the local cell sizes, themselves defined as the side-length of a square with same
area A (h =

√
(A)). Scaling of both errors confirms that the expected first order (left)

and second-order (right) accuracy is achieved.10

An application to variable-resolution icosahedral-hexagonal meshes is shown in
Fig. 4. The remapping is performed between two such meshes. The source mesh is
everywhere about 25% finer than the destination mesh while the resolution of each sin-
gle mesh spans about a decade. As expected, the local error is found to be bounded
O(h2) with h the local mesh size defined here as the square root of the destination cell15

area.

4.3 Efficiency

Figure 5 shows the computation time of a second-order remapping from a uniform res-
olution icosahedral-hexagonal mesh to a regular latitude–longitude mesh vs. the num-
ber N of elements of the meshes. Total time is decomposed according to the different20

steps of the algorithms. Since the remapping is a linear operator, it can be expressed
in terms of weights forming a sparse matrix. These weights are typically pre-computed
for repeated later use. The cost of computing intersections, gradients (only for second
order) and weights is linear in the number of elements. Construction of the SS-tree has
the theoretical complexity of O(N logN) (dashed line).25

The overall computational cost is dominated by the computation of intersections and
therefore close to linear. Extrapolating those curves suggests that for any imaginable
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problem size the SS-tree will not require more computational resources than the com-
putation of intersections, which has O(N) complexity.

5 Conclusions

A local, explicit, second-order, conservative interpolation algorithm has been devised.
The theoretical second-order accuracy has been verified using a smooth test function5

and pairs of meshes covering most meshes commonly used for atmospheric modelling.
The main efficiency bottleneck caused by the construction of the supermesh has been
overcome by adopting tree-based data structures and algorithms, from which the mesh
connectivity can also be deduced efficiently. Experiments confirm a O(N logN) compu-
tational cost of the most expensive operations, especially the supermesh construction.10

Cartesian curvilinear meshes are not covered by this work. Covering such meshes
commonly used for ocean modelling requires essentially adapting the detailed com-
putation of intersections. Higher-order interpolations, or vector interpolations can also
easily be incorporated. This is left for future work.

Although the present sequential method is fast enough to be included as is into pre-15

or post-processing pipelines, further efficiency gains can be obtained by parallelizing
it. The least parallel part of the algorithm is the SS-tree construction. Work is under
way to parallelize this step, using again tree approaches to distribute and balance the
workload, and will hopefully be presented separately.

Acknowledgements. E. Kritsikis and M. Aechtner acknowledge support by the ICOMEX project.20
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Figure 1. Gradient computation: Stokes formula is applied on the boundary ∂Σi of the polygon
surrounding cell i . The vertices of Σi are the barycenters of nearest-neighbour cells j , k, . . . .
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Figure 2. Different meshes are supported and have been tested: latitude–longitude, reduced
latitude–longitude (bottom-right), triangular (bottom-left), cubed-sphere (top-left) and variable-
resolution polygonal (top-right).
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Figure 3. L2 and L∞ errors vs. characterstic mesh length h for the remapping of Y 2
2 . Left:

piecewise-constant reconstruction. Right: piecewise-linear reconstruction.
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Figure 4. When mapping between non-uniform hexagonal meshes, the local error depends
quadratically on the local resolution. Each dot represents a grid cell. The cell size h is computed
as the square root of the cell area.
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Figure 5. Timing of the various steps of second-order remapping from a uniform resolution
icosahedral-hexagonal mesh to a regular latitude–longitude mesh. The SS-tree construction
shows the expected O(N logN) complexity.
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